
Boxcryptor Code Audit
Final Report, 2020-06-24
FOR PUBLIC RELEASE



Contents
1 Summary 2

2 Executive Summary 3

3 Methodology 4

3.1 Code Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Technical Specification Matching . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Findings 6

KS-SCBX-F-01 XML deserializer potentially allows insecure object
deserialization . . . . . . . . . . . . . . . . . . . . . . . . . . 6

KS-SCBX-F-02 Settings JSON parsing could lead to arbitrary object
deserialization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

KS-SCBX-F-03 Low iteration count for PBKDF2 . . . . . . . . . . . . . . . . 8
5 Observations 10

KS-SCBX-O-01 Presence of easily colliding digests . . . . . . . . . . . . . . 10
KS-SCBX-O-02 Unnecessary and strange bitwise XOR in CryptName . . . . 10
KS-SCBX-O-03 The codebase contains dead code or stub functions . . . . 11
KS-SCBX-O-04 Padding is handled manually . . . . . . . . . . . . . . . . . 11
KS-SCBX-O-05 Authenticated encryption uses a hash as a MAC . . . . . . 12
KS-SCBX-O-06 Boxcryptor is not ensuring obliviousness . . . . . . . . . . 13

6 About 14

1



1 Summary
Secomba is developing Boxcryptor, which encrypts files on the fly to protect themwhen
they are located on a cloud storage, while still allowing synchronisation with multiple
devices.
Secomba hired Kudelski Security to perform a security assessment of the Boxcryptor
Windows application, providing access to their source code and documentation.
This document reports the security issues identified and our mitigation recommenda-
tions, as well as some observations regarding the code base and general code safety.
A “Status” section reports the feedback from Secomba’s developers, and includes
a reference to the patches related to the reported issues. All changes have been
reviewed by our team according to our usual audit methodology.
We report:

• 1 security issue of medium severity
• 2 security issues of low severity
• 6 observations related to general code safety

The audit was performed jointly by Nicolas Oberli – Cybersecurity Expert, and Yolan
Romailler – Senior Cryptography Engineer.

2



2 Executive Summary
Kudelski Security has audited the codebase and documentation provided by Secomba.
It included:

• the Boxcryptor Windows Desktop App source code
• internal documentation made available by Secomba
• and the one on https://www.boxcryptor.com/en/technical-overview/.

The application uses standard library functions and standardized methods as often as
possible and we notably covered the following main components among others:

• Secomba.Common: contains most notably the cryptographic operations
• Secomba.Common.Net45: which is mostly a proxy to the crypto provider
• Boxcryptor.Core: contains actual encryption logic, has high level APIs and does
the PKI management

• Boxcryptor.Desktop: contains the file operations, including bulk ones and
read/write operations.

All these components were logically correct and did not show any significant weakness
under scrutiny. It is important to note that the codebase we audited was not showing
any signs of malicious intent neither. The few findings we had were not critical flaws,
or dangerous design mistakes. As such, we are confident the Boxcryptor codebase we
audited is actually doing what it is expected to do.
Overall the cryptographic primitives used and the architecture of the system are
adequate to achieve the security goals we were presented.
Finally, in respect to the code made available for review, Kudelski Security researchers
workedwith the assumption that the code in examwill actually be usedby the deployed
application. In practice, this cannot be checked without reverse engineering the
application executable whenever there are updates, or without a trusted build system.

3

https://www.boxcryptor.com/en/technical-overview/


3 Methodology
In this code audit, we performed four main tasks:

1. informal security analysis of the original protocol;
2. actual code review with code safety issues in mind;
3. assessment of the cryptographic primitives used;
4. compliance of the code with the technical documentation provided.

This was done in a static way and no dynamic analysis has been performed on the
codebase. We discuss more in detail our methodology in the following sections.
3.1 Code Safety

We analyzed the provided code, checking for issues related to:
• general code safety and susceptibility to known vulnerabilities;
• poor coding practices and unsafe behaviour;
• leakage of secrets or other sensitive data through memory mismanagement;
• susceptibility to misuse and system errors;
• error management and logging.

3.2 Cryptography

We analyzed the cryptographic primitives and components, as well as their implemen-
tation. We checked in particular:

• matching of the proper cryptographic primitives to the desired cryptographic
functionality needed;

• security level of cryptographic primitives and of their respective parameters (key
lengths, etc.);

4



Boxcryptor Code Audit – Secomba

• safety of the randomness generation in the general case and in case of failure;
• safety of key management;
• assessment of proper security definitions and compliance to the use cases;
• checking for known vulnerabilities in the primitives used.

3.3 Technical Specification Matching

We analyzed the provided documentation, and checked that the code matches its
specification. We checked for things such as:

• proper implementation of the documented protocol phases;
• proper error handling;
• adherence to the protocol logical description.

3.4 Notes

It is important to notice that, although we did our best in our analysis, no code
audit assessment is per se guarantee of absence of vulnerabilities. Our effort was
constrained by resource and time limits, and in the scope of the agreement between
Secomba and Kudelski Security.
In assessing the severity of some of the findings we identified, we kept in mind both
the ease of exploitability and the potential damage caused by an exploit.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 5 of 14



4 Findings
This section reports security issues found during the audit.
The “Status” section includes feedback from the developers received after delivering
our draft report.
KS-SCBX-F-01: XML deserializer potentially allows insecure object

deserialization

Severity: Medium
Description

Under certain circumstances, the XmlSerializer class allows for unsafe objects deseri-
alization. In the code, this serializer is used for parsing various messages coming from
online storage services but also within the WebDAV client, which is more problematic
since the server could be controlled by a malicious actor.
We reviewed the Secomba.Common/Storage/Implementation/WebDAV/WebDAVXml.cs

file that contains the class definitions for WebDAV messages, and the only pos-
sible problematic element is the Collection abstract class which comes from the
System.Collections package.
Recommendation

While we could not make sure that this object could be used to load arbitrary objects,
we would recommend reviewing this object and make sure that a type is defined for
the Collection class.
For more information about objects deserialization, please see:

• https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_

10-2017_A8-Insecure_Deserialization

• https://speakerdeck.com/pwntester/attacking-net-serialization

6

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-Insecure_Deserialization
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-Insecure_Deserialization
https://speakerdeck.com/pwntester/attacking-net-serialization


Boxcryptor Code Audit – Secomba

Status

The code in question being legacy code, Secomba has removed this section entirely.
They also checked all other locations where XML files are handled andmade sure none
of them use object serialization.
KS-SCBX-F-02: Settings JSON parsing could lead to arbitrary object

deserialization

Severity: Low
Description

The application settings are stored in flat files in the %APPDATA% directory in JSON
format. These settings are then deserialized using a library called Json.Net, which in
certain conditions allow for arbitrary objects deserialization.
If an attacker is able to modify the application settings, it is possible to make the JSON
deserializer load a malicious object and ultimately execute code in the Boxcryptor
execution context. This is causedwhen the TypeNameHandling property of the deserializer
is set to an other value than None.
During this audit, we found two occurrences of the problem :

// Secomba.Common/Storage/Settings/SettingsStorage.cs:106

106 loadedSettings = JsonConvert.DeserializeObject<T>(serializedSettings,

107 new JsonSerializerSettings {

108 TypeNameHandling = TypeNameHandling.Objects,

109 Formatting = Formatting.None

110 });

// Secomba.Common.Analytics/Pipe/Persister.cs:105

105 var typeNameHandlingSettings = new JsonSerializerSettings {

106 TypeNameHandling = TypeNameHandling.All

107 };

Fortunately, none of the serialized object prototypes allow for unsafe objects to be
loaded, so this does not induce a vulnerability by itself.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 7 of 14



Boxcryptor Code Audit – Secomba

Recommendation

Use a SerializationBinder to only allow defined typed to be loaded. (see
(https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serializatio
n.serializationbinder?view=netframework-4.5) for more information).
If possible, disable TypeNameHandling totally when serializing settings, and use a simple
data structure and instantiate objects in the code.
For more information about objects deserialization, please see:

• https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_

10-2017_A8-Insecure_Deserialization

• https://speakerdeck.com/pwntester/attacking-net-serialization

Status

Secomba has implemented the recommended SerializationBinder.
KS-SCBX-F-03: Low iteration count for PBKDF2

Severity: Low
Description

In the Boxcryptor.Core/Encryption/EncryptionService.cs file, we can see that the con-
stant PasswordKdfIterations is set to 5 000, which is not consistent with the constant
DEFAULT_KDF_ITERATIONS set to 10000 in Boxcryptor.Core/UserManagement/Domain/User.cs.
While the key generation code appears to be using using the latter, a value of 10000
remain relatively low as per today’s standards and computing power.
Recommendation

We recommend using a higher value, such as 100000 is this is not impacting
performance too much. This is motivated by the fact that user supplied passwords
are typically low entropy, and thus one wants to increase the difficulty of a dictionary
attack as much as possible.
We would also recommend setting a default minimal length to the user supplied
passwords. A back-of-the-envelope calculation tells us that an 8 characters password
has typically 48 bits of entropy, while 10000 PBKDF2 are considered to “add” roughly
13 bits to it, which means we only have a security level of roughly 61 bits, which is too
© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 8 of 14

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.serializationbinder?view=netframework-4.5
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.serializationbinder?view=netframework-4.5
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-Insecure_Deserialization
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-Insecure_Deserialization
https://speakerdeck.com/pwntester/attacking-net-serialization


Boxcryptor Code Audit – Secomba

low as per the latest advances1 in computing power and brute force. Increasing the
PBKDF2 to 100000 barely crosses the 64 bit marks.
Better than increasing the PBKDF2 iteration count, if FIPS compliance is not required,
we recommendmigration to Scrypt or Argon2 as it would further increase the security
of the system since these are memory-hard.
Status

Secomba has enforced a password length of at least 8 characters in a first iteration, and
will think about addingmore restrictions to ensure better entropy in a second iteration.
The iteration count for PBKDF2 will remain at 10 000, because it appears some client
devices (Internet Explorer, mobile devices) are still too slow to justify an increase to
100000 iterations. Secomba has increased the iteration count for the password hash,
PasswordKdfIterations to 10000 as well, to have equal security properties. However this
iteration count is no longer fixed in the .NET codebase, but delivered by an endpoint
on Secomba’s servers. This has also been updated in the documentation in https:

//www.boxcryptor.com/en/technical-overview/. Notice that the PBKDF2 salt is now
also fully randomized, generated by the client upon creation, but stored on the servers.
Existing users will go through a staged roll-out, while for new users the change is
effective immediately.

1See for instance how https://sha-mbles.github.io/ showed the 64 bits level was breached.
© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 9 of 14

https://www.boxcryptor.com/en/technical-overview/
https://www.boxcryptor.com/en/technical-overview/
https://sha-mbles.github.io/


5 Observations
This section reports various observations that are not security issues to be fixed, such
as improvement or defense-in-depth suggestions.
KS-SCBX-O-01: Presence of easily colliding digests

In certain parts of the code base, the following function found in Secomba.Common/Cry

ptography/HashUtils.cs is used:
17 public static ulong Mac64(byte[] data) {

18 var h = new byte[8];

19 for (var i = 0; i < (data.Length - 1); ++i) h[i % 8] ^= data[i];

20

21 var value = (ulong)h[0];

22 for (var i = 1; i < 8; ++i) value = (value << 8) | h[i];

23

24 return value;

25 }

But this is basically a rolling XOR sum with an 8 bytes window, which is very easily
susceptible to collisions. The different usages of it do not appear to be security issues.
However, we recommend not using this function for other purposes, except when
required to comply with the EncFS scheme.
Status

Secomba has moved the Mac64 method and other similar ones into the filename
encryption class and made them private, so they can only used for that purpose. They
removed all possibilities to call them from somewhere else. As such, the insecure
methods are only usable and used for their original purpose in the frame of the EncFS
scheme used by the filename encryption, reducing significantly the risks of future
misuses and improving maintainability.
KS-SCBX-O-02: Unnecessary and strange bitwise XOR in CryptName

In the function CryptName, in Boxcryptor.Core/Encryption/FilenameCipher.cs, one
can read:

10



Boxcryptor Code Audit – Secomba

118 public byte[] CryptName(byte[] source, IAesKey key, byte[] mac, CryptoStreamMode

streamMode) {↪→

119 byte[] temp;

120 byte[] iv = GetIv(key, mac);

121 ulong seed = (HashUtils.Mac64(iv)) ^ 0;

Notice that here the 0 is hopefully a ulong as well, and as such this XOR is not reducing
the seed to a mere 8 bits integer as one could have feared, yet this bitwise XOR with 0
is not doing anything and does not seem to serve any purpose.
We recommend to avoid such dummy or unnecessary code as much as possible,
especially when there are no comment explaining it, as it does not help with
maintainability of the codebase.
Status

Secomba has removed it.
KS-SCBX-O-03: The codebase contains dead code or stub functions

For example the SecAesPlainServiceProvider class appears to be an insecure stub class,
as it does only implement padding without any actual encryption, but it is also unused
in the codebase we were provided.
We recommend removing dead code as much as possible, and also to add comments
to stub functions that are not meant to be secure, in order to increase maintainability
of the code.
Status

Such unused code will be removed upon discovery. In particular, Secomba has
removed the SecAesPlainServiceProvider class completely.
KS-SCBX-O-04: Padding is handled manually

It appears that in the current codebase, padding is often handled manually. We
recommend considering moving padding management into a self contained function
in order to easemigration to newer padding schemes, shall it be required in the future,
or to completely rely on the Crypto Provider to handle padding as it should.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 11 of 14



Boxcryptor Code Audit – Secomba

This notably occurs in:
• Boxcryptor.Core/IO/SecFile.cs:624-642 is doing PKCS7 padding.
• Secomba.Common.Net45/Cryptography/Implementations/SecAesPlainServic

eProvider.cs:39-43 is doing PKCS7 padding.
• Boxcryptor.Core/Encryption/FilenameCipher.cs:198-201 is doing zero
padding, which is fine with CFB, since it really is just a keystream XORed with the
plaintext. But one would expect the Crypto Provider to handle this directly.

• Secomba.Common/Cryptography/CryptoConvert.cs:59 is using left padding with
zeros, which is fine for big number as it is used, but it might be documented.

As a whole we recommend documenting padding, and the reasons for it whenever it is
performed, as padding oracles are a threat we recommend keeping in mind, especially
when using AES CBC.
Status

Secomba has removed the custom padding occurrences, except for the one in
SecFile.cs as it is part of an experimental feature that is not in production yet and
not activable by the users, and the one in CryptoConvert.cswhere it is expected to be
done like that and has now been documented.
KS-SCBX-O-05: Authenticated encryption uses a hash as a MAC

In the SecRsaCryptoServiceProviderBase class, the functions EncryptAuthenticated and
DecryptAuthenticated are relying on the SHA256 hash of the input data as a MAC, but
the input data is simply the plaintext (since this is done in aMAC-then-encrypt fashion).
Since a MAC must be unforgeable under a chosen message attack for it to be a MAC, a
simple hash function cannot be used as a MAC unless it’s keyed, which it is not there.
Notice this is not the case for the SecAesCryptoServiceProviderBase class, where a keyed
hash function is used as MAC.
Status

This is known behavior and is documented in Secomba’s internal documentation.
At this point, Boxcryptor is not enforcing integrity and is not advertised as doing so
either. Adding effective integrity is a future goal.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 12 of 14



Boxcryptor Code Audit – Secomba

The incorrect naming is a deprecated left-over, implemented back then for consistency
between the interfaces. Newer code is no longer calling thismechanism an actualMAC.
Thanks to the public nature of RSA public keys, everybody can legitimately create new,
validly encrypted RSA packages for the said keys (which is necessary for sharing). This
means that even if Boxcryptor were to enforce integrity, valid RSA encrypted packages
could still be forged.
KS-SCBX-O-06: Boxcryptor is not ensuring obliviousness

As it currently stands, Boxcryptor allows users to access files stored on an untrusted
server in such a way that the server does not learn the contents of the files, however
the server can still monitor the access patterns of which files were accessed at which
times. The study of “Oblivious RAM” (ORAM) protocols is an active field of research in
cryptography whose goal is to protect both the content and the access patterns from
the monitoring of an untrusted server.
While the loss of privacy caused by the leakage of the access patterns of given files
(especially if files have encrypted file names) is arguably concerning, we do recommend
that Secomba monitors closely the evolution of existing ORAM schemes and the
emergence of new solutions, as these are particularly well suited to store data on
untrusted servers and are not necessarily unpractical.
Status

Secomba will monitor the evolution of ORAM as suggested and consider it for future
versions of Boxcryptor.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 13 of 14



6 About
Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs.
Our global reach and cyber solutions focus is reinforced by key international partner-
ships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com or https://kudelski-blockchain.com/.

Kudelski Security
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA 2020, all rights reserved.

14

https://www.kudelskisecurity.com
https://kudelski-blockchain.com/

	Summary
	Executive Summary
	Methodology
	Code Safety
	Cryptography
	Technical Specification Matching
	Notes

	Findings 
	XML deserializer potentially allows insecure object deserialization
	Settings JSON parsing could lead to arbitrary object deserialization
	Low iteration count for PBKDF2

	Observations 
	Presence of easily colliding digests
	Unnecessary and strange bitwise XOR in CryptName
	The codebase contains dead code or stub functions
	Padding is handled manually
	Authenticated encryption uses a hash as a MAC
	Boxcryptor is not ensuring obliviousness

	About

